Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Three‐Dimensional Habitat Structure Drives Avian Functional and Trait Diversity Across North AmericaABSTRACT Understanding how three‐dimensional (3D) habitat structure drives biodiversity patterns is key to predicting how habitat alteration and loss will affect species and community‐level patterns in the future. To date, few studies have contrasted the effects of 3D habitat composition with those of 3D habitat configuration on biodiversity, with existing investigations often limited to measures of taxonomic diversity (i.e., species richness). Here, we examined the influence of Light Detecting and Ranging (LiDAR)‐derived 3D habitat structure–both its composition and configuration–on multiple facets of bird diversity. Specifically, we used data from the National Ecological Observatory Network (NEON) to test the associations between 11 measures of 3D habitat structure and avian species richness, functional and trait diversity, and phylogenetic diversity. We found that 3D habitat structure was the most consistent predictor of avian functional and trait diversity, with little to no effect on species richness or phylogenetic diversity. Functional diversity and individual trait characteristics were strongly associated with both 3D habitat composition and configuration, but the magnitude and the direction of the effects varied across the canopy, subcanopy, midstory, and understory vertical strata. Our findings suggest that 3D habitat structure influences avian diversity through its effects on traits. By examining the effects of multiple aspects of habitat structure on multiple facets of avian diversity, we provide a broader framework for future investigations on habitat structure.more » « lessFree, publicly-accessible full text available April 1, 2026
-
ABSTRACT Avian irruptions are facultative, often periodic, migrations of thousands of birds outside of their resident range. Irruptive movements produce regional anomalies of abundance that oscillate over time, forming ecological dipoles (geographically disjunct regions of low and high abundance) at continental scales. Potential drivers of irruptions include climate and food variability, but these relationships are rarely tested over broad geographic scales. We used community science data on winter bird abundance (1989–2021) to identify spatiotemporal patterns of irruption for nine boreal birds across the United States and Canada and compared them to time series of winter climate and annual tree seed production. We hypothesized that, during irruption, bird abundance would decrease in regions experiencing colder winter climates (climate variability hypothesis) or low seed production resulting from the boom‐and‐bust of widespread mast‐seeding patterns (resource variability hypothesis). Across all species, we detected latitudinal or longitudinal irruption modes, or both, demonstrating north–south and east–west migration dynamics across the northern United States and southern Canada. Seven of nine species displayed associations consistent with the climate variability hypothesis and six with the resource variability hypothesis. While irruption dynamics are likely entrained by multiple environmental drivers, future climate change could alter the spatial and temporal characteristics of avian irruption.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract Climate associated ecological phenomena that occur approximately once per decade suggest the influence of decadal climate oscillations. However, the consistency and origins of such climate patterns in the Atlantic and Pacific regions is currently under debate. Here, we propose a probabilistic explanation for episodic ecological events based on the likelihood of multiple climate patterns converging in a particular phase combination. To illustrate, we apply this model to continental scale facultative migration of seed-eating finches out of the boreal forest. Thisirruptionphenomenon is triggered by seed crop failures stemming from two weakly correlated climate patterns occurring simultaneously in their positive phases—the North Atlantic Oscillation (NAO) and the North Pacific Oscillation (NPO). The joint probability of NAO and NPO both being positive (above upper tercile) is about , illustrating a simple probabilistic explanation for quasi-decadal finch irruption and potentially other episodic ecological events in regions affected by multiple climate modes.more » « less
-
ABSTRACT Assemblages in seasonal ecosystems undergo striking changes in species composition and diversity across the annual cycle. Despite a long‐standing recognition that seasonality structures biogeographic gradients in taxonomic diversity (e.g., species richness), our understanding of how seasonality structures other aspects of biodiversity (e.g., functional diversity) has lagged. Integrating seasonal species distributions with comprehensive data on key morphological traits for bird assemblages across North America, we find that seasonal turnover in functional diversity increases with the magnitude and predictability of seasonality. Furthermore, seasonal increases in bird species richness led to a denser packing of functional trait space, but functional expansion was important, especially in regions with higher seasonality. Our results suggest that the magnitude and predictability of seasonality and total productivity can explain the geography of changes in functional diversity with broader implications for understanding species redistribution, community assembly and ecosystem functioning.more » « less
-
Atmospheric variability can impact biological populations by triggering facultative migrations, but the stability of these atmosphere-biosphere connections may be vulnerable to climate change. As an example, we consider the leading mode of continental-scale facultative migration of Pine Siskins, where the associated ecological mechanism is changes in resource availability, with a mechanistic pathway of climate conditions affecting mast seeding patterns in trees which in turn drive bird migration. The three summers prior to pine siskin irruption feature an alternating west-east mast-seeding dipole in conifer trees with opposite anomalies over western and eastern North America. The climate driver of this west-east mast-seeding dipole, referred to as the North American Dipole, occurs during summer in the historical record, but shifts to spring in response to future climate warming during this century in a majority of global climate models. Identification of future changes in the timing of the climate driver of boreal forest mast seeding have broadly important implications for the dynamics of forest ecosystems.more » « less
-
Responses of wildlife to climate change are typically quantified at the species level, but physiological evidence suggests significant intraspecific variation in thermal sensitivity given adaptation to local environments and plasticity required to adjust to seasonal environments. Spatial and temporal variation in thermal responses may carry important implications for climate change vulnerability; for instance, sensitivity to extreme weather may increase in specific regions or seasons. Here, we leverage high-resolution observational data from eBird to understand regional and seasonal variation in thermal sensitivity for 21 bird species. Across their ranges, most birds demonstrated regional and seasonal variation in both thermal peak and range, or the temperature and range of temperatures when observations peaked. Some birds demonstrated constant thermal peaks or ranges across their geographical distributions, while others varied according to local and current environmental conditions. Across species, birds typically demonstrated either geographical or seasonal adaptation to climate. Local adaptation and phenotypic plasticity are likely important but neglected aspects of organismal responses to climate change.more » « less
-
Abstract The teleconnection mechanisms associated with midlatitude climate dipoles are of high interest because of their potential broad impacts on ecological patterns and processes. A prominent example attracting increasing research interest is a summer (June–August) North American dipole (NAD), which drives continental-scale bird irruptions in the boreal forest (semiperiodic movements of large numbers of individual birds). Here, the NAD is objectively defined as a second principal component of 500-hPa geopotential height and is linked to two mechanisms: 1) Rossby waves associated with Madden–Julian oscillation (MJO) convection and 2) a pan-Pacific stationary Rossby wave triggered by East Asian monsoonal convection. The MJO mechanism relates to anomalously frequent occurrence of MJO phase 1 or 6, which are captured by the leading principal component of daily summer MJO phases (PC M1 ; accounting for 46% of the phase variance). In “nonuniform” MJO summers, defined as |PC M1 | > 0.5, anomalously frequent phase 1 triggers positive NAD, and anomalously frequent phase 6 triggers negative NAD, yielding the correlation r (NAD, PC M1 ) = 0.55, p < 0.01. During “uniform” MJO summers, defined as |PC M1 | ≤ 0.5, the effect of East Asian precipitation anomalies P EA becomes apparent, and r (NAD, P EA ) = 0.49, p < 0.01. The impacts of P EA are largely masked during nonuniform MJO summers, meaning this subset of summers lacks a significant correlation between the NAD and P EA . Our interpretation is that uniformly distributed MJO allows monsoonal convection over the midlatitudes to modulate the NAD, whereas tropical convection anomalies associated with anomalously frequent MJO phases 1 and 6 overwhelm the extratropical teleconnection.more » « less
-
Climate change is a well‐documented driver and threat multiplier of infectious disease in wildlife populations. However, wildlife disease management and climate‐change adaptation have largely operated in isolation. To improve conservation outcomes, we consider the role of climate adaptation in initiating or exacerbating the transmission and spread of wildlife disease and the deleterious effects thereof, as illustrated through several case studies. We offer insights into best practices for disease‐smart adaptation, including a checklist of key factors for assessing disease risks early in the climate adaptation process. By assessing risk, incorporating uncertainty, planning for change, and monitoring outcomes, natural resource managers and conservation practitioners can better prepare for and respond to wildlife disease threats in a changing climate.more » « less
-
The conversion of forest to agriculture is considered one of the greatest threats to avian biodiversity, yet how species respond to habitat modification throughout the annual cycle remains unknown. We examined whether forest bird associations with agricultural habitats vary throughout the year, and if species traits influence these relationships. Using data from the eBird community‐science program, we investigated associations between agriculturally‐modified land cover and the occurrence of 238 forest bird species based on three sets of avian traits: migratory strategy, dietary guild, and foraging strategy. We found that the influence of agriculturally‐modified land cover on species distributions varied widely across periods and trait groups but highlighting several broad findings. First, migratory species showed strong seasonal differences in their response to agricultural land cover while resident species did not. Second, there was a migratory strategy by season interaction; Neotropical migrants were most negatively influenced by agricultural land cover during the breeding period while short‐distance migrants were most negatively influenced during the non‐breeding period. Third, regardless of season, some dietary (e.g. insectivores) and foraging guilds (e.g. bark foragers) consistently responded more negatively to agricultural land cover than others (e.g. omnivores and ground foragers, respectively). Fourth, there were greater differences among dietary guilds in their responses to agricultural land cover during the breeding period than during the non‐breeding period, perhaps reflecting how different habitat and ecological requirements enhance the susceptibility of some guilds during reproduction. These results suggest that management efforts across the annual cycle may be oversimplified and thus ineffective when based on broad ecological generalisations that are static in space and time.more » « less
-
Abstract As climate change advances, there is a need to examine climate conditions at scales that are ecologically relevant to species. While microclimates in forested systems have been extensively studied, microclimates in grasslands have received little attention despite the climate vulnerability of this endangered biome. We employed a novel combination of iButton temperature and humidity measurements, fine-scale spatial observations of vegetation and topography collected by unpiloted aircraft system, and gridded mesoclimate products to model microclimate anomalies in temperate grasslands. We found that grasslands harbored diverse microclimates and that primary productivity (as represented by normalized difference vegetation index), canopy height, and topography were strong spatial drivers of these anomalies. Microclimate heterogeneity is likely of ecological importance to grassland organisms seeking out climate change refugia, and thus there is a need to consider microclimate complexity in the management and conservation of grassland biodiversity.more » « less
An official website of the United States government
